
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #15

Game Engine Standards

• Engines

– Ogre 3D

– XNA platform

– Unreal, Quake and CryEngine

• Components

– Global architecture

– Scene management

– Input management

– Resource management

3

How they did it?

• Object-oriented Graphics Rendering Engine

– a graphics engine, not a game engine...

– easy plugin of features (python script, ode

physics engine, etc.)

– http://www.ogre3d.org

4

Ogre 3D

Torchlight

Runic Games
Alien Dominion

Black Fire Games

http://www.ogre3d.org/

• Programming
– OO interface in C++

– Extensible framework

– Stable and high performance engine

• Platform
– Multi-platform

– Direct3D and OpenGL support

• Content
– Scene manager

– Resource manager
• Material, meshes

– Animation

– Renderer
• Special effects, shader

– Plugins

5

Ogre features

6

Ogre architecture overview

• The ‘Root’ object is the entry point

– must be the first created object

– must be the last deleted object

– enables the configuration of the system

– has a continuous rendering loop

7

Ogre

• SceneManager

– Contains everything that appears on the screen

– Different managers for terrain (heightmap),

exterior and interior scenes

• Entity

– Type of object you can render in the scene

– Anything that is being represented by a mesh

(player, ground, …)

– Not an entity: Lights, Billboards, Particles,

Cameras, etc.

8

Ogre

• SceneNode

– Scene nodes keep track of location and

orientation for all of the objects attached to it

– An Entity is only rendered on the screen if it is

attached to a SceneNode object

– A scene node's position is always relative to its

parent node

– A scene manager contains one root node to

which all other scene nodes are attached

• The final structure is the scene graph

9

Ogre

10

Ogre
// Create Root

Ogre::Root* mRoot = new Ogre::Root();

// Parses resources.cfg

setupResources();

// Shows the Ogre config GUI which configures the render system

// and constructs a render window

configure();

// The scene manager decides what to render

chooseSceneManager();

// We need a camera to render from

createCamera();

// and at least one viewport to render to

createViewports();

11

Ogre
// Create any resource listeners (for loading screens)

createResourceListener();

// Now we can load the resources: all systems are on-line

loadResources();

// Now that the system is up and running: create a scene to render

createScene();

// Create any frame listeners (input manager: keyboard, mouse...)

createFrameListener();

// Kick off Ogre loop

mRoot->startRendering();

// Clean up

destroyScene();

// Delete root

delete mRoot;

• Ogre is using a Frame Listener in the game

loop to receive notification from the system

– The game inherits from FrameListener

– And register itself to listen to the notifications

12

Ogre application design

class Game : public Ogre::FrameListener { // ... }

mRoot->addFrameListener(this);

• The Root::startRendering method starts the
rendering cycle

– It begins the automatic rendering of the scene

– It will not return until the rendering cycle is
halted

• During rendering, any FrameListener
registered will be called back for each frame
that is to be rendered

– These classes can tell Ogre to halt the
rendering if required, which will cause this
method to return

13

Ogre game loop

• Ogre notifies the listeners at different time of
the game loop

– if return value is false, program exits

– evt.timeSinceLastFrame contains how long is
has been since the last call

14

Ogre game loop

// called just before a frame is rendered

virtual bool frameStarted(const FrameEvent& evt);

// called after all render targets have had their rendering commands

// issued, but before the render windows have been asked to swap

// buffers

virtual bool frameRenderingQueued(const FrameEvent& evt);

// called just after a frame has been rendered (buffers swapped)

virtual bool frameEnded(const FrameEvent& evt);

15

Ogre game loop

void Root::startRendering(void) {

 // ... Initialization ...

 mQueuedEnd = false;

 while(!mQueuedEnd) {

 //Pump messages in all registered RenderWindow windows

 WindowEventUtilities::messagePump();

 if (!renderOneFrame()) break;

 }

}

bool Root::renderOneFrame(void) {

 if(!_fireFrameStarted()) return false;

 if (!_updateAllRenderTargets()) // includes _fireFrameRenderingQueued()

 return false;

 return _fireFrameEnded();

}

• Ogre allows for both HID managements

– polling (called unbuffered)

– interruption (called buffered)

16

Input management in Ogre

• Update the user inputs in frameRenderingQueued

– where mMouse and mKeyboard are defined using the

OIS library included in Ogre

• processUnbufferedInput pass the event to user

functions according to the updated keyboard and

mouse states

17

HID unbuffered in Ogre

bool Game::frameRenderingQueued(const Ogre::FrameEvent& evt) {

 // ...

 mMouse->capture(); // to read mouse state

 mKeyboard->capture(); // to read keyboard state

 return processUnbufferedInput(evt);

}

bool processUnbufferedInput(const Ogre::FrameEvent& evt);

• Example

18

HID unbuffered in Ogre

static bool Game::prevLeftMouseDown = false; // if a mouse button was pressed

static Ogre::Real Game::mMove = 0.2; // the movement increment

bool Game::processUnbufferedInput(const Ogre::FrameEvent& evt) {

 // check if current left mouse button is pressed

 bool leftMouseDown = mMouse->getMouseState().buttonDown(OIS::MB_Left);

 if (leftMouseDown && !prevLeftMouseDown) { // if not pressed before

 // do something when left mouse button pressed, e.g. shoot();

 prevLeftMouseDown = true;

 }

 // check if user is pressing up arrow

 if (mKeyboard->isKeyDown(OIS::KC_NUMPAD8) ||

 mKeyboard->isKeyDown(OIS::KC_UP)) {

 moveForward(mMove);

 }

 // update scene ...

}

• Mouse and keyboard events are handled

immediately instead of once per game loop

• Ogre uses an event mechanism (DP), the

game class needs to inherit from

 OIS::KeyListener for keyboard OIS::MouseListener for mouse

19

HID buffered in Ogre

#include <OISEvents.h>

#include <OISInputManager.h>

#include <OISKeyboard.h>

class Game : public OIS::KeyListener

#include <OISEvents.h>

#include <OISInputManager.h>

#include <OISMouse.h>

class Game : public OIS::MouseListener

• The following member functions are inherited

– when a key is pressed, the keyPressed function is fired

– when the mouse moves, the mouseMoved function is

fired

– etc.

20

HID buffered in Ogre

// OIS::KeyListener

virtual bool keyPressed(const OIS::KeyEvent& evt);

virtual bool keyReleased(const OIS::KeyEvent& evt);

// OIS::MouseListener

virtual bool mouseMoved(const OIS::MouseEvent& evt);

virtual bool mousePressed(const OIS::MouseEvent& evt, OIS::MouseButtonID id);

virtual bool mouseReleased(const OIS::MouseEvent& evt, OIS::MouseButtonID id);

• The listening registrations are done during

the application setup, typically in a

createFrameListener function

21

HID buffered in Ogre

void Game::createFrameListener () {

 // ...

 mMouse->setEventCallBack(this);

 mKeyboard->setEventCallBack(this);

 // ...

}

• A resource has different states

– Unknown: Ogre is not aware of the resource. Its

filename is stored but Ogre has no idea what to do

with it

– Declared: Flagged for creation. Ogre knows what

type of resource it is, and what to do with it when

the time comes to create it

– Created: Ogre has created an empty instance of

the resource, and added it to the relevant manager

– Loaded: Created instance has been fully loaded,

stage at which the resource's file is accessed

22

Resource management in Ogre

1. Ogre's native ResourceManagers are

created in Root::Root

2. Specify resource locations by calling

3. Manually declare resources

– Declared state for declared resources

– Unknown otherwise

23

Resource management in Ogre

ResourceGroupManager::addResourceLocation(“name”,“locType”)

4. Script parsing to automatically declare

resources

– Set these resources as Declared

– Creates the declared resources, now Created

5. Resources are loaded when

– an entity ask for a unloaded resource

– explicit call to load a resource

– explicit call to load the declared resources

 loaded resources put in Loaded state

24

Resource management in Ogre

• ResourceManager::unload reverts a
resource from Loaded to Created

• ResourceManager::remove removes a
resource

– back to Unknown state

• You can get a pointer to the resource with
ResourceManager::getByName and unload
or remove it manually

• Any existing resources are removed when
the resource manager is destroyed

25

Resource management in Ogre

• Reloading resources is a very useful feature

– resource is unloaded, and then loaded again

– moves from Loaded to Created and then back

to Loaded again

• ResourceManager::reloadAll reloads all

resources of one type

• Resources can be individually reloaded with

Resource::reload

26

Resource management in Ogre

• To extend the resource types

27

Resource management in Ogre

class MyResource : public Ogre::Resource {

 protected:

 void loadImpl(); // load resource (e.g. from file)

 void unloadImpl(); // unload it

 size_t calculateSize() const; // get its size

 // ...

}

class MyResourceManager : public Ogre::ResourceManager {

protected:

 Ogre::Resource * createImpl(const Ogre::String &name,

 Ogre::ResourceHandle handle, const Ogre::String &group, bool isManual,

 Ogre::ManualResourceLoader *loader, const Ogre::NameValuePairList

 *createParams); // creates the MyResource instance

public:

 virtual MyResource * load(const Ogre::String &name, const Ogre::String

&group); // load the resource (and create it if needed)

 // ...

}

• To extend the resource types

28

Resource management in Ogre

MyResourceManager * mRM = new MyResourceManager();

ResourceGroupManager::getSingleton().declareResource("resourceName",

"MyResource");

MyResource* _resource = mRM->load("resourceName",

ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

_resource->aFunction(); // you can now use the resource

// ...

_resource->reload();

// ...

mRM->unload("resourceName");

mRM->remove("resourceName");

// ...

• Ogre uses many different design patterns

– Factory in
• MoveableObjectFactory, ParticleEmitterFactory, ...

– Iterator in
• ParticleIterator, ...

– Singleton in
• Root, OverlayManager, MaterialManager, ...

– Listener in
• FrameListener, ResourceGroupListener, ...

• Other commonly appearing structures

– Events, Buffers, Plugins, Serializers

29

Ogre

• C# game engine for PC and Xbox 360

– Easy programming of DirectX based games

• Documentation on MSDN Library

http://msdn.microsoft.com/en-us/library/

 Development Tools and Languages

 XNA Game Studio

• Two sets of libraries

– XNA Framework

– Content Pipeline

30

Microsoft XNA Platform

http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/

• Library of classes, interfaces and value types
– Framework

• commonly used game classes, e.g. timer and game loop

– Framework.Audio
• audio management

– Framework.Graphics
• 2D/3D graphics

– Framework.Input
• keyboard, mouse and Xbox 360 controller

– Framework.Net
• networking

– Framework.Storage
• file manipulation

– ...

31

XNA Framework architecture

32

Microsoft.Xna.Framework

33

Microsoft.Xna.Framework.Net

34

XNA Game
using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

class BasicXNAGame : Game { // Inherits from XNA Game functionalities

 GraphicsDeviceManager graphics; // The graphics manager

 SpriteBatch spriteBatch; // The sprite batch

 static void Main() {

 BasicXNAGame game = new BasicXNAGame(); // Main program creates a new game ...

 game.Run(); // ... and runs it

 }

 public BasicXNAGame() {

 Content.RootDirectory = "Content"; // Setup of content directory

 graphics = new GraphicsDeviceManager(this); // Create the graphics manager

 }

 protected override void LoadContent() {

 spriteBatch = new SpriteBatch(GraphicsDevice); // Create the sprite batch

 }

 protected override void Update(GameTime gameTime) { // update code }

 protected override void Draw(GameTime gameTime) { // draw code }

}

• The game loop is started by the function run

of the class Game

• The run method calls the virtual functions to

initialize the game, to update and draw the

game, and to process events

35

XNA game loop

static class Program {

 static void Main(string[] args) {

 MyGame game = new MyGame();

 game.Run();

 }

}

public class MyGame : Microsoft.Xna.Framework.Game { // ... }

• The game loop is made of calls to the

update and draw functions of the game

– gameTime is the time elapsed since the last

game loop call

36

XNA game loop

protected override void Update(GameTime gameTime) { // ... }

protected override void Draw(GameTime gameTime) { // ... }

• The scene management (e.g. scene graph)

is up to the user

• The graphics library contains low-level API

methods that take advantage of hardware

acceleration capabilities to display 2D/3D

objects

– Basically an interface for Direct3D

– With classes such as Texture2D, ModelMesh

and Effect

37

Scene management XNA

38

Microsoft.Xna.Framework.Graphics

39

Microsoft.Xna.Framework.Graphics

• Models and Sprites

• On PC, XNA can manage GamePad,

Keyboard, Mouse and Microphone

• XNA provides only polling functions

40

Input management XNA

KeyboardState ks = Keyboard.GetState();

if (ks.IsKeyDown(Keys.Space)) { // ... }

MouseState ms = Mouse.GetState();

if (ms.LeftButton == ButtonState.Pressed) { // ... }

int curMousePos.X = ms.X;

int curMousePos.Y = ms.Y;

41

Microsoft.Xna.Framework.Input

• You can simulate events by manually

checking changes in the state

42

Input management XNA

KeyboardState _oldState; // data member

// ...

KeyboardState newState = Keyboard.GetState();

if (newState.IsKeyDown(Keys.Space)) {

 if (!_oldState.IsKeyDown(Keys.Space)) { // Key just pressed }

}

else if (_oldState.IsKeyDown(Keys.Space)) { // Key just released }

_oldState = newState; // Update state

• Game assets are managed by the XNA

Framework Content Pipeline

• It transfers the run-time native loading process

to compile time (implemented in Visual Studio)

– Each asset is imported from its original file format

and processed into a managed code object

– Those objects are then serialized to a file that is

included in the game’s executable

– At run time, the game reads the serialized data from

the file directly into a managed code object

43

Resource management XNA

• Default asset importers in XNA

– Autodesk model: .fbx

– DirectX effect: .fx

– Sprite fonts: .spritefonts

– Texture: .bmp, .jpg, .png, .tga, ...

– DirectX file: .x

– Microsoft Audio file: .xap

– XML file: .xml

• Automatically detected (dedicated project)

and added to resource file
44

Resource management XNA

• To load a resource

45

Resource management XNA

SpriteBatch spriteBatch;

Texture2D myTexture; // This is a texture to render

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 myTexture = Content.Load<Texture2D>("mytexture");

}

protected override void UnloadContent()

{

 // ...

}

• Custom Content Pipelines can be added to

support additional art assets and formats

• Or to derive special-purpose content from

another piece of content at the time the

game is built

• The asset is added in XNA project and its

properties specify the appropriate importer

– At build time the assigned importer is invoked

– The asset is built into the game in a form that

can be loaded at run time

 46

Resource management XNA

• To manage new asset files

– A custom importer is required that outputs a

CustomContent object

– A custom content processor is also needed

– The ContentManager.Load method must be extended to

support the custom data object

47

Resource management XNA

48

Microsoft.Xna.Framework.Content

• Unreal Engine 3 technology is available
through UDK: the Unreal Development Kit

– Main page: http://udk.com/

– Documentation: http://udn.epicgames.com/Three/

• Features

– Own editing environment (UnrealEd)

– Highly dependent on scripts (UnrealScript)

– Animation manager (AnimTrees)

– Interface with PhysX engine (Unreal PhAT)

– Networking, audio, particle, shader, AI managers

– and more

49

Unreal Engine

http://udk.com/
http://udk.com/
http://udk.com/
http://udn.epicgames.com/Three/
http://udn.epicgames.com/Three/

• UnrealScript is used to create custom

classes to form the gameplay for the game

– Located in a dedicated folder and pointed by a

configuration file

• Content is stored within packages stored in

a Content directory of the Unreal installation

– including sub-folders for characters, maps,

environments, sounds, etc.

50

Unreal Game

• The scripts are compiled into packages

usable by the engine

• Default packages are

– Core, Engine, GFxUI, GameFramework,

UnrealEd, GFxUIEditor, IpDrv,

OnlineSubsystemPC,

OnlineSubsystemSteamworks, UDKBase, and

UTEditor

– Plus your own MyGame package

51

Unreal Game

• Player's viewpoint is handled in the

GetPlayerViewPoint function of the

PlayerController class

• Input from the player are handled and

translated into controlling the game

– the class responsible for determining how the

player controls the game is PlayerController

52

UDK Gameplay

class MyGamePlayerCamera extends Camera;

function UpdateViewTarget(out TViewTarget OutVT, float DeltaTime) { // ... }

class MyGamePlayerController extends GamePlayerController;

defaultproperties { CameraClass=class'MyGame.MyGamePlayerCamera' }

• The visual representation of the player and

the logic for determining how it interacts with

the physical world is encapsulated in the

Pawn class

• The HUD class is responsible for displaying

information about the game to the player

53

UDK Gameplay

class MyGamePawn extends Pawn;

defaultproperties { // ... }

class MyGameHUD extends MobileHUD;

defaultproperties { // ... }

• The gametype determines the rules of the

game and the conditions under which the

game progresses and ends

• The gametype is also responsible for telling

the engine which classes to use for

PlayerControllers, Pawns, the HUD, etc.

54

UDK Gameplay

class MyGame extends FrameworkGame;

defaultproperties

{

 PlayerControllerClass=class'MyGame.MyGamePlayerController'

 DefaultPawnClass=class'MyGame.MyGamePawn'

 HUDType=class'MyGame.MyGameHUD'

 bDelayedStart=false

}

• The UnrealFrontend application finally

provides the ability to build scripts, either as

a single operation or as part of a pipeline for

building and packaging the game for testing

or distribution

55

Unreal Game

56

Quake engine family

• Current version is Id Tech 5

– Used in Rage and Doom 4

• Id Tech 4 SDK download and documentation

http://www.iddevnet.com/quake4 (2005)

• Source code released in November 2011

– ftp://ftp.idsoftware.com/idstuff/source/idtech4-

doom3-source-GPL.zip

– Used in Doom 3, Quake 4, Wolfenstein, Brink

57

Quake engine: Id Tech

http://www.iddevnet.com/quake4
http://www.iddevnet.com/quake4
http://www.iddevnet.com/quake4
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip
ftp://ftp.idsoftware.com/idstuff/source/idtech4-doom3-source-GPL.zip

• Q4Radiant is the editor used to create the

maps

– To create a game you start by modeling the

virtual world (objects, lights, shadows etc.)

• Q4Script system is then used to implement

the game logic

– the scripts will be called from the game with

triggers activated by conditions defined in the

editor

58

An Id Tech 4 game

• Script to spawn a monster at a location

defined in the editor (targetMonster)

59

An Id Tech 4 game

void spawnMonster() {

 //create a variable to hold the entity handle

 entity newMonster;

 //spawn the monster and store his handle in the variable

 newMonster = sys.spawn("monster_strogg_marine");

 //move it to where that new target lives in the edited map

 newMonster.setWorldOrigin($targetMonster.getWorldOrigin());

}

• Another very good free SDK: CryEngine 3
– SDK download: http://www.crydev.net

– SDK documentation: http://freesdk.crydev.net/

– Source released in August 2011

– Used in Crysis 2, also level design oriented

• Architecture
– Engine

• Config, Fonts, Shaders

– Game
• Animations, Entities, Levels, Music, Scripts, etc.

• Libs
– Dialogs, Particles, Sky, SmartObjects, UI, etc.

• Scripts
– AI, Entities, GameRules, Network, Utils, etc.

60

 And more...

http://www.crydev.net/
http://www.crydev.net/
http://freesdk.crydev.net/
http://freesdk.crydev.net/

End of lecture #15

Next lecture

Final lecture

